Semiprime modules with maximum conditions
نویسندگان
چکیده
منابع مشابه
Goldie Conditions for Ore Extensions over Semiprime Rings
Let R be a ring, σ an injective endomorphism of R and δ a σderivation of R. We prove that if R is semiprime left Goldie then the same holds for the Ore extension R[x;σ, δ] and both rings have the same left uniform dimension.
متن کاملMaximum entropy principle with imprecise side-conditions
In this paper we consider the maximum entropy principle with imprecise side-conditions, where the imprecise side-conditions are modeled as fuzzy sets. Our solution produces fuzzy discrete probability distributions and fuzzy probability density functions.
متن کاملClean Semiprime f-Rings with Bounded Inversion
An element in a ring is called clean if it may be written as a sum of a unit and idempotent. The ring itself is called clean if every element is clean. Recently, Anderson and Camillo (Anderson, D. D., Camillo, V. (2002). Commutative rings whose elements are a sum of a unit and an idempotent. Comm. Algebra 30(7):3327–3336) has shown that for commutative rings every von-Neumann regular ring as we...
متن کاملSome Inequalities for Maximum Modules of Polynomials
A well-known result of Ankeney and Rivlin states that if p(z) is a polynomial of degree n, such that p(z) 0 in [z[ < 1, then maxlz[=R>_l Ip(z)l <_ (---)maxlzl= Ip(z)l. In this paper we 1)rove ,some generalizations and refinements of this result.
متن کاملCentralizers on semiprime rings
The main result: Let R be a 2-torsion free semiprime ring and let T : R → R be an additive mapping. Suppose that T (xyx) = xT (y)x holds for all x, y ∈ R. In this case T is a centralizer.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1973
ISSN: 0021-8693
DOI: 10.1016/0021-8693(73)90101-4